Modeling the Cardiovascular System
FEATURED ARTICLE

1017 Myths and Realities Surrounding the Mysterious Caterpillar Fungus

Jan Martel, Yun-Fei Ko, Jian-Ching Liau, Chien-Sheng Lee, David M. Ojcius, Hsin-Chih Lai, and John D. Young
Science & Society

Myths and Realities Surrounding the Mysterious Caterpillar Fungus

Jan Martel,1,2,3 Yun-Fei Ko,2,4,5 Jian-Ching Liau,4 Chien-Sheng Lee,4 David M. Ojcius,1,2,6 Hsin-Chih Lai,1,2,7,8,9,10,11,12 and John D. Young1,2,3,4,5,13,*

The caterpillar fungus Ophiocordyceps sinensis is a medicinal mushroom increasingly used as a dietary supplement for various health conditions, including fatigue, chronic inflammation, and male impotence. Here, we propose strategies to address the existing challenges related to the study and commercial production of this mysterious fungus.

The Emperor’s Remedy
The caterpillar fungus is not the typical white button mushroom you will find at the grocery store. Found only in the cold mountains of the Himalayan region and the Tibetan plateau (see Figure IA,B in Box 1), the caterpillar fungus has a parasitic life cycle that resembles the scenario of a horror movie. After infecting a caterpillar larva underground, the fungus’ spores slowly turn the insect into a zombie and force it to take a vertical position, with the head up, just below the surface of the ground. The spores then develop into cells that gradually consume the larva’s internal organs, literally mummifying the caterpillar before producing a mushroom that comes out of the head of the cadaver (see Figure IA in Box 2) and grows a few inches above the ground.

Also called Ophiocordyceps sinensis, or simply cordyceps, the caterpillar fungus has been cherished for more than two thousand years as traditional Chinese medicine for treatment of various health conditions, including fatigue, diabetes, inflammation, lung and kidney problems, and even cancer [1–3]. Considered an elixir of health and longevity once reserved for the emperor, the fungus captured international attention in 1993 when Chinese track coach Junren Ma claimed that it helped his athletes break a series of world records [4] (see Figure IC,D in Box 1). Today, the fungus is used to treat male impotence and boost libido, which earned it the nickname ‘Himalayan Viagra’. Recent studies show that cordyceps indeed possesses a wide range of beneficial effects on cells, animals, and humans [1–3], including increased energy and testosterone levels [5,6].

Unfortunately, the high demand for the caterpillar fungus on the market has led

1Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
2Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
3Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
4Chang Gung Biotechnology Corporation, Taipei 10508, Taiwan
5Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
6Department of Biomedical Sciences Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
7Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
8Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan 33302, Taiwan
9Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
10Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
11Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
12Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
13Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY 10021, USA

*Correspondence: jdyoung@mail.cgu.edu.tw (J.D. Young).
to a sharp production decline in recent years, and mycologists fear that the species may soon disappear [7]. *O. sinensis* is now listed as an endangered species in China, and its harvest is highly regulated by authorities [3], which has led to steep price increases in recent years, with high-quality fruiting bodies being sold for as much as US$10 000–60 000/kg [7]. In 2013, sales represented US$1.2 billion in the Tibetan Autonomous Region alone, where most of the harvest occurs. On the one hand, harvesting of the fungus has been a blessing for some Tibetan families who live off the lucrative sales of the fungus. On the other hand, the fungus has also been a curse, as conflicts have erupted over territories where the fungus grows. In 2007, eight Tibetan villagers were killed in disputes over harvesting rights of the caterpillar fungus [7].

In Vitro Cultivation

To address the problems related to the rarity of cordyceps in nature, scientists have devoted considerable effort to cultivating cordyceps mushrooms in an industrial setting, but these efforts have been disappointing due to the slow growth and low yield of the fungus. In *vitro* production of the mycelium form of the fungus in liquid culture (see Figure 1B–E in Box 2) has emerged as a major breakthrough in the field, leading to a boom in commercialization of natural health products. Yet, fungal contaminants are also isolated from fruiting bodies of the caterpillar fungus obtained in the wild and many erroneous species have been found in mycelium-based products available on the market. In fact, perhaps no other fungus has been the subject of more contentious identity claims than cordyceps, with several mycelial species listed in the past as the authentic

Box 1. Cultural and Traditional Significance of the Caterpillar Fungus

The annual harvest of cordyceps has become a familial tradition for people living on the Tibetan plateau (Figure 1A). The caterpillar fungus has a major economic impact in this region since it represents the main source of income for many households. Cordyceps is sold at local markets (Figure 1B), where steep price increases have been noted in recent years, mainly due to the high demand in China and recent decline in production. Depending on local traditions and personal preferences, cordyceps may be consumed in a tea or soup, often as a tonic to boost energy and to reduce fatigue (Figure 1C). In 1993, Chinese track runner Junxia Wang is said to have broken several world records in part due to regular consumption of caterpillar fungus (Figure 1D). This phenomenon led to a considerable increase in the popularity of cordyceps health supplements for antifatigue and performance-enhancing effects.

Figure 1. Cultural and Traditional Significance of the Caterpillar Fungus. (A) Tibetan villagers harvest cordyceps on the Tibetan plateau near Yushu city (Qinghai, China). (B) Merchants inspect cordyceps specimens at a local market, near Yushu. (C) A soup containing cordyceps is served at a Chinese restaurant. (D) Chinese track runner Junxia Wang celebrates gold at the 1993 World Championships in Stuttgart (Germany). Images are used with permission: Images A and B, © Kevin Frayer/Getty Images News/Getty Images; Image C, © 123RF; Image D, © Mike Powell/Getty Images Sport/Getty Images.
counterparts of the wild cordyceps. To compound the issue of authenticity, unrelated species such as *Cordyceps militaris*, whose fruiting bodies can be cultivated in vitro, are still to this day commercialized and sold as authentic *O. sinensis* mushrooms, increasing further the confusion of customers. This is all rather unfortunate and disconcerting since the issue of identity has in fact been settled through verifiable science. Thus, mycelia carefully isolated
from a natural *O. sinensis* fruiting body will not only belong to the same species as the fruiting body upon DNA typing, but they will also mimic the growth of the fungus seen in nature [7]. Unlike fungal contaminants but like the wild species, these mycelia will grow only in cold temperature, typically at 16 °C or under, and only in slightly acidic pH [8]. Such mycelium forms of *O. sinensis* display further a number of biological effects associated with the fruiting bodies found in the wild [9–11], suggesting that the mycelium strain may be used as an authentic substitute for the rare and precious fruiting bodies (Box 2). This straightforward presumption, however, relies on ethics, namely the choice of correct species being marketed as a cordyceps analog, since there are no regulatory means to enforce authenticity.

Besides authenticity, another ethical issue or, perhaps, dilemma is widely seen at play with this fungus. Given its low growth yield, culture medium residues are commonly included in commercial mycelium products [12]. That is, cordyceps mycelium has been routinely cultured on liquid media containing corn, soy, yeast, or silkworm pupa powder obtained as by-products of other industries, but these media are only partially consumed by mycelium in culture, and solid residues remain in the final products. In fact, the amounts of these solid nutrient residues may be considerable on a weight basis when compared with the net weight of the fungal mycelium itself. This concern calls to question the standardization (or lack of) of any cordyceps product in terms of dosage and efficacy. Moreover, cases of allergies to silkworm pupae attributed to the presence of undissolved medium residues in *O. sinensis* products have been reported in the literature [12]. Parenthetically, a liquid culture medium that can be used to culture cordyceps mycelium on a large scale, researchers might be in a better position to study the biology of this organism and identify the active compounds responsible for its biological effects. For instance, it remains unclear how the fungus can control the behavior of the host larva, forcing it to take a vertical position that facilitates spore dispersal. Regarding the fungus’ active compounds, the nucleoside analog cordycepin (3’-deoxyadenosine) has been heralded as the main active ingredient, but several studies [8,13] have shown that cordycepin is either absent or barely detectable in cordyceps fruiting bodies or mycelium. This observation suggests that earlier reports describing the presence of cordycepin in cordyceps may have used the wrong species, possibly *C. militaris*, which contains substantial amounts of the compound [14].

Other bioactive compounds have been identified in cordyceps, including adenosine, polysaccharides, lovastatin, and sterols [1–4]. While the compounds isolated from cordyceps may be developed as pharmaceutical drugs, it appears that whole *O. sinensis* extracts provide unique physiological effects since they modulate various cellular and physiological pathways. As such, whole extracts may be well suited for regular consumption and prevention of chronic diseases, whereas single compounds derived from the fungus may represent a good strategy for the development of pharmaceutical drugs and the treatment of acute symptoms [19]. In either case, exacting the highest ethical standards in strain identification, growth, and propagation is required before any such meaningful endeavors can be taken seriously.

Concluding Remarks

Culture of caterpillar fungus mycelium under controlled laboratory conditions offers an interesting alternative to harvesting of the wild mushroom. However, in view of concerns related to the correct identification of *O. sinensis* mycelium and the absence of regulations for natural health products, companies need to self-police to safeguard consumers from potential issues related to product authenticity, quality, and safety. With the guidelines highlighted here and recent advances made in the field, we are confident that the study of *O. sinensis* and its commercial production will lead to the development of new strategies and identification of novel bioactive molecules to prevent and treat human disease. The caterpillar fungus has not revealed all of its mysteries – at least, not yet.

Disclaimer Statement

Y.-F.K. is President of Chang Gung Biotechnology. J.-C.L. and C.-S.L. are employees of Chang Gung Biotechnology. J.D.Y. is Chairman of the Board of Chang
Gung Biotechnology. The authors have filed patent applications related to the preparation and use of medicinal mushrooms.

Acknowledgments
The authors’ work is supported by Primordia Institute of New Sciences and Medicine, grant MOST103-2320-B-182-027-MY3 from the Ministry of Science and Technology of Taiwan, and grants CMRPD190303, BMFPA04, and QZRPD120 from Chang Gung Memorial Hospital.

References
12. Choi, G.S. et al. (2010) Five cases of food allergy to vegetable worm (Cordyceps sinensis) showing cross-reactivity with silkworm pupae. Allergy 65, 1196–1204